
Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 5: Computer Architecture slide 1

Computer Architecture

Elements of Computing Systems, Nisan & Schocken, MIT Press www.idc.ac.il/tecs

Usage and Copyright Notice:

Copyright 2005 © Noam Nisan and Shimon Schocken

This presentation contains lecture materials that accompany the textbook “The Elements of
Computing Systems” by Noam Nisan & Shimon Schocken, MIT Press, 2005.

We provide both PPT and PDF versions.

The book web site, www.idc.ac.il/tecs , features 13 such presentations, one for each book
chapter. Each presentation is designed to support about 3 hours of classroom or self-study
instruction.

You are welcome to use or edit this presentation as you see fit for instructional and non-
commercial purposes.

If you use our materials, we will appreciate it if you will include in them a reference to the book’s
web site.

If you have any questions or comments, you can reach us at tecs.ta@gmail.com

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 5: Computer Architecture slide 2

Babbage’s Analytical Engine (1835)

� “We may say most aptly that the
Analytical Engine weaves algebraic
patterns just as the Jacquard-
loom weaves flowers and leaves”
(Ada Lovelace)

Charles Babbage (1791-1871)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 5: Computer Architecture slide 3

Other early computers and “computer scientists”

Blaise Pascal
1623-1662

Gottfried Leibniz
1646-1716

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 5: Computer Architecture slide 4

Von Neumann machine (c. 1940)

Arithmetic Logic
Unit (ALU)

CPU

Registers

Control

Memory

(data

+

instructions)

Input
device

Output
device

Andy Grove (and others) ... made it small and fast.John Von Neumann (and others) ... made it possible

Stored
program
concept!

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 5: Computer Architecture slide 5

Arithmetic Logic
Unit (ALU)

CPU

Registers

Control

Memory

(data

+

instructions)

Input
device

Output
device

Processing logic: fetch-execute cycle

Executing the current instruction involves one or more of
the following micro tasks:

� Have the ALU compute some function f(registers)

� Write the ALU output to selected register(s)

� As a side-effect of executing these tasks,
figure out which instruction to fetch and execute next.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 5: Computer Architecture slide 6

The Hack chip-set and hardware platform

Elementary logic gates

� Nand

� Not

� And

� Or

� Xor

� Mux

� Dmux

� Not16

� And16

� Or16

� Mux16

� Or8Way

� Mux4Way16

� Mux8Way16

� DMux4Way

� DMux8Way

Combinational chips

� HalfAdder

� FullAdder

� Add16

� Inc16

� ALU

Sequential chips

� DFF

� Bit

� Register

� RAM8

� RAM64

� RAM512

� RAM4K

� RAM16K

� PC

Computer Architecture

� Memory

� CPU

� Computer

done

done

done

this lecture

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 5: Computer Architecture slide 7

The Hack computer

Main parts of the Hack computer:

� Instruction memory

� Memory:

� Data memory

� Screen

� Keyboard

� CPU

� Computer (the glue that holds everything together).

� 16-bit Von Neumann platform

� Instruction memory and data memory are physically separate

� I/O: 512 by 256 black and white screen, standard keyboard

� Designed to execute programs written in the Hack machine language

� Can be easily built from the chip-set that we built so far in the course

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 5: Computer Architecture slide 8

Lecture plan

� Instruction memory

� Memory:

� Data memory

� Screen

� Keyboard

� CPU

� Computer

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 5: Computer Architecture slide 9

Instruction memory

out

15 16

address
ROM32K

Function:

� Pre-loaded with a machine language program

� Always emits a 16-bit number:

out = ROM32K[address]

� This number is interpreted as the current instruction.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 5: Computer Architecture slide 10

Data memory

Reading/writing logic

� Low level: Set address, in, load ; probe out

� Higher level (e.g. OS level): peek(address)
poke(address,value).

load

outin

16

15

16

address

RAM16K

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 5: Computer Architecture slide 11

Lecture plan

� Instruction memory

� Memory:

� Data memory

� Screen

� Keyboard

� CPU

� Computer

����

����

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 5: Computer Architecture slide 12

Screen

� Functions exactly like a 16-bit 8K RAM :

� out = Screen[address]

� If load then Screen[address] = in

� Side effect:
continuously refreshes a 256 by 512 black-and-white screen.

load

out

in

16

15

16address
Screen

Physical
Screen

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 5: Computer Architecture slide 13

Screen memory map

Writing pixel(x,y) to the screen:

� Low level: Set the y%16 bit of the word found at
Screen[x*32+y/16]

� High level: Use drawPixel(x,y) (OS service, later).

0
1

255

.

.

.

. . .0 1 2 3 4 5 6 7 5110011000000000000
0000000000000000

0000000000000000

0
1

31

.

.

.
row 0

0001110000000000
0000000000000000

0000000000000000

32
33

63

.

.

.
row 1

0100100000000000
0000000000000000

0000000000000000

8129
8130

8160

.

.

.

row
255

. . .

. . .

. . .

.

.

.

refresh several times
each second

Screen

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 5: Computer Architecture slide 14

Keyboard

� Keyboard chip = 16-bit register

� Input: 16-bit value coming from a physical keyboard

� Output: the scan code of the pressed key, or 0 if no key is pressed

� Special keys:

out

16

Keyboard

Keyboard

Reading the keyboard:

� Low level: probe the contents of the Keyboard register

� High level: use keyPressed() (OS service, later).

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 5: Computer Architecture slide 15

The Hack computer

� Instruction memory

� Memory:

� Data memory

� Screen

� Keyboard

� CPU

� Computer

����

����

����

����

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 5: Computer Architecture slide 16

Memory
load

out

in

16

15

16

RAM
(16K)

address

0

16383

Screen
memory map

(8K)

16384

24575

24576
Keyboard

memory map

 Memory

Keyboard

Screen

Function:

� Access to any address from 0 to 16,383 results in accessing the RAM

� Access to any address from 16,384 to 24,575 results in accessing the Screen
memory map

� Access to address 24,576 results in accessing the keyboard memory map

� Access to any address > 24576 is invalid.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 5: Computer Architecture slide 17

The Hack computer

� Instruction memory

� Memory:

� Data memory

� Screen

� Keyboard

� CPU

� Computer

����

����

����

����

����

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 5: Computer Architecture slide 18

CPU

instruction

inM

16

1

15

15

16 outM

16

writeM

addressM

pc
reset

1

C
P

U

to data
memory

to instruction
memory

from
data memory

from
instruction

memory

CPU components: ALU + A, D, PC registers

CPU Function: Executes the instruction according to the Hack language specification:

� The M value is read from inM

� The D and A values are read from (or written to) these CPU-resident registers

� If the instruction wants to write to M (e.g. M=D), then the M value is placed in outM, the
value of the CPU-resident A register is placed in addressM, and writeM is asserted

� If reset=1, then pc is set to 0;
Otherwise, pc is set to the address resulting from executing the current instruction.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 5: Computer Architecture slide 19

CPU

instruction

inM

16

1

15

15

16 outM

16

writeM

addressM

pc
reset

1

C
P

U

to data
memory

to instruction
memory

from
data memory

from
instruction

memory

CHIP CPU {

IN inM[16], instruction[16], reset;

OUT outM[16], writeM, addressM[15], pc[15];

PARTS:

// Implementation missing

}

CHIP CPU {

IN inM[16], instruction[16], reset;

OUT outM[16], writeM, addressM[15], pc[15];

PARTS:

// Implementation missing

}

� CPU implementation: next 3 slides.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 5: Computer Architecture slide 20

The C-instruction revisited

jumpdestcomp

1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3binary:

dest = comp; jump

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 5: Computer Architecture slide 21

Execute logic:

� Decode

� Execute

Fetch logic:

If jump then set PC to A
else set PC to PC+1

A
LU

M
ux

D

M
ux

reset

inM

addressM

pc

outM

A/Minstruction

decode

C

C

C

C

C

D

A

PC

C

C

A

A

A

M

ALU output

writeMC

C

jumpdestcomp

1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3binary:

dest = comp; jumpCPU implementation

Cycle:

� Fetch

� Execute

Reset logic:

Set reset to 1,
then to 0.

Chip diagram:

� Includes
most of the
exec. logic

� Control
logic is
hinted.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 5: Computer Architecture slide 22

The Hack computer

� Instruction memory

� Memory:

� Data memory

� Screen

� Keyboard

� CPU

� Computer

����

����

����

����

����

����

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 5: Computer Architecture slide 23

Computer-on-a-chip interface

Computer
reset

Keyboard

Screen

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 5: Computer Architecture slide 24

Computer-on-a-chip implementation

Data
Memory

(Memory)

instruction

C
P

U

Instruction
Memory

(ROM32K)

inM

outM

addressM

writeM

pc

reset
CHIP Computer {

IN reset;

PARTS:

// implementation missing

}

CHIP Computer {

IN reset;

PARTS:

// implementation missing

}

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 5: Computer Architecture slide 25

The Big Picture

� Instruction memory

� Memory:

� Data memory

� Screen

� Keyboard

� CPU

� Computer

����

����

����
����
����

����

����

“Ya, right,
but what about
the software?”

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 5: Computer Architecture slide 26

How it actually looks (thank goodness for abstractions!)

CPU

RAM

bus

I/O board
(graphics card)

Extension
slots / ports

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 5: Computer Architecture slide 27

Perspective

� I/O: more units, processors

� Special-purpose processors (graphics, communications, …)

� Efficiency

� CISC / RISC (HW/SW trade-off)

� Diversity: desktop, laptop, hand-held, game machines, …

� General-purpose VS dedicated / embedded computers

� Silicon compilers

� And more ...

